If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-960=0
a = 3; b = 6; c = -960;
Δ = b2-4ac
Δ = 62-4·3·(-960)
Δ = 11556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11556}=\sqrt{36*321}=\sqrt{36}*\sqrt{321}=6\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{321}}{2*3}=\frac{-6-6\sqrt{321}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{321}}{2*3}=\frac{-6+6\sqrt{321}}{6} $
| 9+x/3=-7 | | 4x+3x-7=-2x-48 | | 3x+390=4x+280 | | 4+3x=9x-8-12 | | 2/5d=4 | | 15x+9=7x-23 | | 8x+14+5x=6(x-5)+7x | | (10x-7)=(3x+7) | | 3w+5.3=13.5 | | 0=X^4-x^2-12 | | 6(x-3)=25 | | 7-4x+3=-16-2x | | (x+3)(x+3)(x+3)-2=x(x+5)(x+4)-4 | | x(4x-3)+x(3x-3)=(7x+9)(x-2) | | -9(w+4)=7w-20 | | 2v+10=46 | | 30s-14=100 | | -3+n5=-12 | | -25•30s-14=100 | | 4x-48=20x | | 0.12x+0.7(x-4)=0.01(3x-4) | | 5^x-3=3^2x+1 | | 8+n2=-4 | | 4(3^(2x-4))=36 | | y-3-8=3 | | 3(1-x)=9 | | 4(3^2x-4)=36 | | 2/3x+12=1 | | b+50(-3)=95 | | 2x+60+110=360 | | x4+6=18 | | 1.8+32=f |